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Abstract. An analysis is given for the calculation of the single-scattering profile 
Sl(x, y ,  z ,  . .. ) from the observed spectrum I(%, y ,  z ,  . .. ), when I(x,  y ,  z, ... ) contains 
contributions from plural-scattering events. No assumptions are made concerning the 
line shape for SI(x ,  y ,  z, , .. ), but a value for the unscattered intensity is required. 
Further, the analysis given requires that all the scattered intensity is collected, so that 
Poisson statistics are applicable to the scattering processes occurring in the specimen. 
The solution for SI@, y, z . . . ) is then given as a series in I(%, y, z, . , , ), with appropriate 
weighting coefficients. The spectrum I(%, y, z, . . . ) must be corrected for the finite 
resolution of the spectrometer, before a solution can be obtained for S I ( x , y ,  z ,  ... ). 
Computational tests and the limitations of the present analysis are given. 

1. Introduction 
Frequently the observed spectrum I (x ,y ,  x, ... ) obtained in an experiment is not suited 

to a direct comparison with a theoretical model. The  ideal spectrum for comparison with 
theory is the distribution Sl (x ,y ,  z ,  ... ) that results after a single-scattering event, but in 
practice this is modified by subsequent scattering events within the specimen and one 
obtains instead the compound spectrum S(x, y, x, ...), which is the sum of 1, 2, 3, ..,, m 
scattering events, i.e. 

n = m  

S(x, y ,  2, . I .  ) = c a,S,(x,y, x, ...) (1) 
n = l  

where 

S,(x,y,z,  ...) =I 
and a, are normalizing constants which depend on the statistics of the scattering processes 
occurring within the specimen. 

Equation (1) has been written in terms of a general multi-dimensional coordinate 
system (x,y,  x, ... ), for mathematical reasons only. In  practice, the one-dimensional form 
of equation (1) is most frequently encountered in spectroscopy, but occasionally the two- 
dimensional form of equation (1) is appropriate in describing the scattering processes 
within the specimen, for example the measurement of the angular and energy coordinates 
of electrons which have been inelastically scattered in thin films. 

Further, S(x, y ,  x, ...) may be modified by the finite resolution M ( x ,  y ,  z ,  ...) of the 
spectrometer according to the convolution integral, to give the measured curve I(%, y ,  x, ...), 
i.e. 

(2) 

+ m  

S1(x ’ ,y ’ ,z ’ ,  . . . ) S n - l ( ~ - x ‘ , y - y ‘ , x - x ’ ,  ...) dx’dy’dx’ ... 
- m  

+ m  

I ( x ,  y ,  x, . . .) = 1 S(x’, y ’ ,  x’, .. . )M(x - x’, y -y ’ ,  x- x’, . . .) dx’ dy’ dx’ . , . 
- m  

where ,iM(x, y ,  x, ...) is normalized such that 

iW(x, y ,  2, ...) dx dy dx ... = 1. 
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Plural scattering 541 

Solutions of equation (2) for S(x, y ,  z ,  ...) in one dimension are well known (e.g. Jones and 
R4isell 1967, Moore 1968, Ergun 1968, Hossfeld 1968), and in two dimensions the solution 
for S(x, y ,  x, ...), although a more difficult problem than the one-dimensional case may be 
solved by an iteration procedure (e.g. Burr 1966, Ergun 1968). The  effect of not correcting 
I(x,y,  x, ...) for resolution effects is that, in the present analysis, we would calculate a single- 
scattering curve which bears no simple relation to the required curve s,(~,  y ,  x, ...). 

For simplicity in the present paper we shall consider only the one-dimensional solution 
of equation (l), but the method of calculation of S,(x, y ,  z ,  ...) for the general multi- 
dimensional problem is similar and will be limited only by the computing facilities available. 
In  particular, we shall consider the problem of the energy losses of fast electrons in thin 
films, where we have 

n = m  

with 

J - 0 3  

provided that we define S,(E) = 0 for E < 0, i.e. the incident electron may only lose energy 
on being scattered in the specimen film. 

If we consider an S,(E) which is composed of only a single loss distribution, then, 
provided that all scattered electrons are collected, it may be shown that (Burge and Missell 
1968) 

(4) 

where t is the specimen thickness, X the mean free path for the scattering process and 
+cc 

I ,  = 1 S1(E)dE. 
- m  

The  procedure of Burge and Misell (1968) was then to assume some profile for S,(E) 
defined by a set of unknown parameters and to curve-fit, by a least-squares method, the 
equation (4) to the experimental curve, when it was then possible to determine the para- 
meters defining S,(E) and t j A .  However, there are a number of objections to this type of 
procedure, which, in particular, prevent the application of equation (4) to determine an 
S,(E) composed of several types of scattering processes : 

(i) The  assumption of a model for S,(E). Each scattering process in S,(E) is represented 
by an analytic curve, the form of which is governed by a reasonable theoretical model. As 
such, S,(E) is pre-determined to some extent, even though the parameters of the component 
curves are arbitrary. 

(ii) Before the application of equation (4) to the observed spectrum, we must be certain 
of the exact number of processes which make up the single-scattering curve. This quantity 
we can never be certain about, owing to the possible overlap of the component curves of 

(iii) Owing to the non-physical nature of curve-fitting procedures, it is possible to fit 
almost any analytic function to the experimental curve provided that the number of variables 
is sufficiently large. Thus the S,(E) determined from curve-fitting must be subject to close 
scrutiny. 

(iv) Some difficulty will arise from assigning certain peaks in the spectrum to single- or 
plural-scattering events, and this again leads to arbitrary solutions for S,(E). 

In  summary, the curve-fitting procedure predetermines S,(E) by the initial assump- 
tions. 

In  this paper we shall give an analysis for the determination of S,(E), without any 
initial assumptions on its shape, in terms of the experimental curve S(E),  corrected for 
instrumental effects (equation (Z)), and the unscattered (elastically scattered) electron 
intensity I,. This S,(E) may then be compared either directly with a theoretical curve or 

&(E). 

A 3  
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fitted by a sum of curves, which represent the individual components of Sl(E) ,  but in this 
case the theory is introduced at a late stage and does not pre-determine the single-scattering 
curve. 

2. Formulation of the plural-scattering problem 
If the single-scattering curve is given as Sl(E) = f l (E)+gl (E)+hl (E)+ ..., where 

f l ( E ) ,  gl(E), hl(E), etc., are the component distributions of S,(E), then the resultant spec- 
trum may be written as 

t n- l  S,(E) 
S(E)  = 2 (--) - 

n = l  A a J s  a !  

where, for the convenience of the subsequent analysis, the upper limit m of the summation 
has been replaced by infinity. This modification makes no difference to the physical 
significance of equation ( 5 ) ,  since for n > m it has been implicitly assumed that further 
terms in the summation make no significant contribution to S(E). 

Is = If+Ig+Ih+ e . .  t 6) 
and A,, is the average mean free path for all single-scattering processesf, g, h, ... , 

Further, we have that 
1 1 1 1  _ -  - -+-+- 

Ah (7) 

(8) 

and 
1 1 1  

If : Ig : Ih : = - * . - . * - . ... . 
x,q Ah 

It must, however, be shown that equation ( 5 )  is the same equation as that which would be 
derived if we considered f, g, h, ... as separate processes, each characterized by its own mean 
free path, i.e. it is necessary to determine the function S(E) by the consideration of all 
combinations of the loss processes f ,  g, h, ... with appropriate statistical weighting factors. 
Applying Poisson statistics to an Sl(E) composed of just two types of losses f and g, we 
find for S(E) the following expression : 

where the indicates the convolution offn(E) withg,(E). Applying equations (6), (7) and 
(8) to equation ( 5 ) ,  we can readily show that equations ( 5 )  and (9) are identical term by term 
for a given number of plural-scattering events. Similarly, it may be shown that equation ( 5 )  
is equivalent to an equation of a similar form as (9) for an Sl(E) comprising three types of 
loss processesf, g, h. A detailed analysis showing the equivalence of equations ( 5 )  and (9) is 
given in the appendix. The  analysis is of general validity for an S,(E) comprising an 
arbitrary number of component distributions. 

3. Derivation of an equation for &(E) 
From equation ( 5 )  it is possible to derive an expression for Sl(E) in terms of a series in 

(t/X,,Is) and S(E),  but an equation of the form (9) would not be so amenable to the present 
analysis. The first step in the solution of equation ( 5 )  for S l (E)  involves taking the Fourier 
transforms of both sides of ( 5 ) ,  where we define the Fourier transform of the function 

+ m  
S(E)  by 

S ( W )  = I S(E) exp( - iwE) dE. (10) 
- - 3 o  
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Hence equation (5) becomes 

where we have written C for the quantity (t/AavIs) ( =l/Io, I ,  is the unscattered intensity). 
From the properties of the Fourier integral it is known that (e.g. Titchmarsh 1948, 

Sneddon 1951) 
+ m  

S,(w) = j’l dEJ^ Sn-l(E’)Sl(E-E’)  exp( - iwE) dE’ = S 1 ( w ) S n - l ( w ) .  
- m  

Hence equation (1 1) becomes 

We then obtain from equation (12) the following expression for Sl(w) : 

and, for ICS(w)l< 1, the logarithmic term may be expanded in a power series, i.e. 

&(w)  = S(w)  - &C{S(,))Z + 3C2{S(w))3 - $C3(S(w)}4 * a .  . 

&(E) = S(E)-&C(S(E)* S(E)}++C2{S(E)* S(E)* S(E)}-  ... 

(14) 

(15) 

Taking inverse Fourier transforms of equation (14) gives for S,(E) 

where 
1 + m  

S(E)*S(E)  = I S(E’)S(E-E’)dE‘ and C = -. 
- - C O  1 0  

Thus S,(E) is determined by S(E),  the experimental curve corrected for resolution effects, 
and the parameter C, which is the inverse of I,. The major consideration is the validity 
of the expansion in equation (13), on which the correctness of equation (15) depends. It 
may be shown that for a Gaussian S,(E) the expansion (13) is valid, provided that the 
average number of scattering events occurring in the specimen (tiha,) is less than 0 6 9 ;  
this upper limit for (t/Aav) is dependent on the nature of the S,(E) profile (which determines 
S ( E )  by equation (5)), but we can expect (15) to be valid for at least (t/A,,) = 0.5 (see $ 4 
for a detailed consideration of this question). In  electron energy-loss work we should 
expect Aav values of approximately 500-1000 A, and this indicates that the film thickness t 
must be in the range 250-500 A for (15) to be applicable to the electron energy-loss spec- 
trum, and t values of this order are not impractical. I n  any case, the determination of the 
single-scattering curve by a fitting procedure based on equations of the form (9) and its 
more complicated extensions would seem to be a formidable computing problem. 

The  Sl(E) computed from an experimental curve by the use of equation (15) is not 
necessarily the unique solution of (5), but a repetition of the computations for several film 
thicknesses (within the range for which equation (15) is valid) should give a consistent set of 
S,(E) curves, within the experimental error. The  solution for S,(E) is unique only in the 
case of error-free data (see $4). 

4. Computational tests 
In  order to ascertain the validity of equation (15) and also to determine an upper limit 

for t /hav,  we have generated test S(E) curves by using suitable line shapes for S l (E)  in 
equation (5), for example a sum of Lorentzians or Maxwellians and for a range of t / A a ,  
values. This S(E)  and I ,  (= IsAav/t)  were then treated as experimental data subjected 
to combined errors in the range 0-20%. The  experimental single-scattering curve Sl’(E) 
was then calculated from equation (15) and the fit of this curve to the generating S,(E) was 
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assessed by the quantity U%, where 

for Y points on the S(E) curve. 
The  results of these computations for tjh,, values in the range 0.25-1 e00 are summarized 

in table 1. The U values given represent average values calculated for varying types, number, 

Table 1. The effect of error in the experimental dataS(E) on the computed 
single-scattering curve SI@) (equation (15)) 

Experimental 
error (oh) 

tih,, = 0.25 

0.0 
2.0 
4.0 
6.0 
8 .0 

10.0 
12.0 
14.0 
16.0 
18.0 
20.0 

0.0 
1.5 
3.3 
4.3 
5 *7 
7.2 
8.7 
0-1 
1.6 
3 9 0  
4.5 

0.0 0.0 
2.4 3.2 
4.9 6-5 
7.4 9.8 
9.9 13.1 

12.4 16.5 
14.9 19.8 
17.4 23.2 
19.4 26.6 
22.4 30.1 
25.0 33.6 

t / L "  = 1.00 

0.0 
4.0 
8.1 

12.2 
16.3 
20.4 
24.6 
28.8 
33.1 
37.5 
41 *6 

t Resultant error in SI(E). 

half-widths and position of the maxima of distributions comprising S,(E). In  the case of 
error-free data the maximum value of tlh,, for which equation (15) is valid is unity. 
However, in the case of experimental data the maximum value of t/X,, for which equa- 
tion (15) is useful will be given by the criterion that U should not be much larger than the 
experimental error. With the present test data this indicates a maximum value of tlh,, of 
about 0.5. In  practice, the error in S,(E) need not be as large as indicated in table 1, since 
we may analyse a number of experimental spectra for different t values or even different 
scans for the same specimen. An averaging procedure over all computed S,(E) curves 
should yield a satisfactory single-scattering curve. 

5. Discussion of the analysis and its limitations 
The present analysis gives a method, suitable for computer evaluation, for determining 

the single-scattering curve from an experimental profile, which is composed of a sum of 
repetitions of the primary scattering event. The  advantages of the present analysis in 
relation to curve-fitting procedures for calculating S,(E) arise from the rigidity imposed on 
the solution for S,(E) by the use of the latter method and the initial information required 
concerning the number of processes which comprise S,(E). An S,(E) obtained by the above 
method may be then subjected to any model analysis required without the restrictions of a 
fitting procedure. Equation (15) may readily be rewritten for a two-dimensional experi- 
mental curve S(x ,y ) ,  but the increased computing time required to find a solution for 
S,(x, y )  may prove a major difficulty. In  this case curve-fitting procedures would also be 
difficult to apply. It is, however, necessary to point out the limitations of the present 
analysis : 

(i) The  series solution for S,(E) (equation (15)) is only slowly convergent, whereas 
equation ( 5 )  converges rapidly with increasing n. 
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(ii) The  effect of experimental error in the solution of equation (15) becomes serious 
if the number of terms required becomes large, and could eventually lead to a divergence 
of the series for S,(E), when the value of C is near the upper limit allowed for the expansion 
in equation (13). Thus the analysis is only ideal for small C values, when the number of 
terms required to describe &',(E) in (15) is also small. Section 4 dealt with this problem in 
some detail. 

(iii) There is the possibility that, when experimental errors are large, several solutions 
for S,(E) may be determined that fit the experimental curve equally well, and even a study 
of the variation of S(E) with t may not be sufficient to determine a useful S,(E) curve. 

(iv) The  statistics of the scattering processes must be known for the analysis to be applic- 
able. However, this limitation also can apply to curve-fitting procedures. 

In  conclusion, the present analysis, despite the above limitations, would seem to 
provide a flexible approach to the determination of the primary- (single-) scattering event, 
when the experimental curve is derived from a sum of terms, each term representing the 
scattering due to a given number of repetitions of the primary scattering. 
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Appendix 
Suppose S,(E) is made up of two distributionsf,(E) and gl (E) .  Let us divide the film 

thickness t into n strips, each of elemental thickness At. Let the probability of collisionf, 
in the thin strip be a, and of g, be p. After passing through the first strip, the electron 
probability (magnitude) is by definition (for an incident electron beam of unit intensity) 

(1 - x - p )  + a  + p  
where the terms represent those electrons which are unscattered and those electrons which 
undergo collisions f, and g, respectively. 

After two thicknesses At, At the electron probability distribution is 

(1 - x - p)' + y.2 +pz t 2( 1 - y. - p ) x  + 2( 1 - % -p>p + 2 4 .  

After n collisions we obtain 

( ( l - x - p ) + r . + p ) "  = ( l - x - P ) " +  i;) (1 - x - p)" - ' ( a  + p) 

+ ( ; ) ( l -%-p) " - "%+p) '+  . I .  +(%+P)". 

In  the limit n + 03, At -+ 0, such that the probability of scattering (totally, not in a 'thin' 
strip) is finite, 

na --f-- 

t 
from the definition of mean free path. 

rip +-- 
A, if I 

Thus 
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where each power of l / h f  is associated with an fl collision, each l / h ,  with a g, collision. 
The  above equation represents the distribution of the magnitudes of scattering. Inserting 
the actual distributions, we obtain 

where the * indicates the convolution of two functions. I t  has been assumed that the 
incident electron beam may be represented as a delta function. Now, S,(E) is a sum of 
simple collisions, i.e. 

g l ( q  S,(E) = constant x -+- 
(I ,h,  I,& I 

but by definition 

Thus 

and we obtain the following expression for S(E) for an S,(E) comprising two distributions 
fdE) and : 

1 
n = l  L v I s  n! 

t n - 1  

S(E)  = 2 (-) {f ,(E) +gl(E))* ( n  oonvolutions) - 

which is identical with equation (5). 

component distributions is quite straightforward. 
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